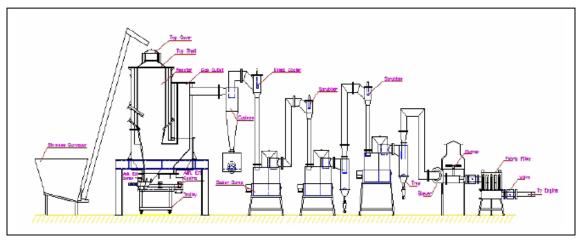
Bio-residue gasification – Science and Technology

Combustion, Gasification & Propulsion Laboratory Department of Aerospace Engineering

The Presentation

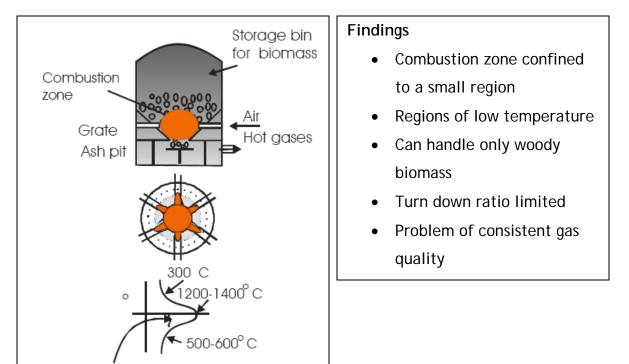

- The technology
 - System configuration and elements.
- Scientific input to the technology development
 - Results from basic studies and their use in design of the gasification system.

Gasification process

Process that converts solid fuel to gaseous fuel

- Used in an internal combustion engine for power generation to substitute fossil fuel
 - Diesel engine for dual fuel application
 - Gas engine for single fuel
- Used in heat application
 - o Low temperature drying, etc
 - High temperature furnaces, kilns, etc

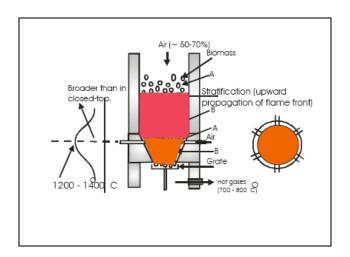
Technology elements



Salient features

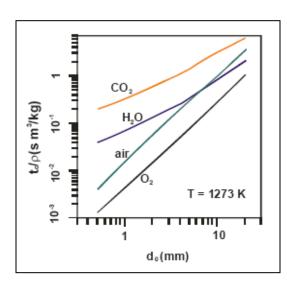
- Well insulated reactor
 - Ceramics to stand high temperature and meet industrial standards
 - o No metal would stand the oxidizing and reducing environment
- Necessary cooling and cleaning system
 - to meet the end use requirements

Reactor design: II WW - Closed top design


Initial development activity began using a closed top design

Reactor design - IISc design - open top

Novel reactor design


- Biomass + air -> volatiles + char with CO₂ + H₂O -> 0.2 CO, 0.2H₂, 0.12CO₂, 0.02 CH₄ + rest N₂
- Air is drawn from the top and from the air nozzles -
 - Uniform distribution
- Broader high temperature zone

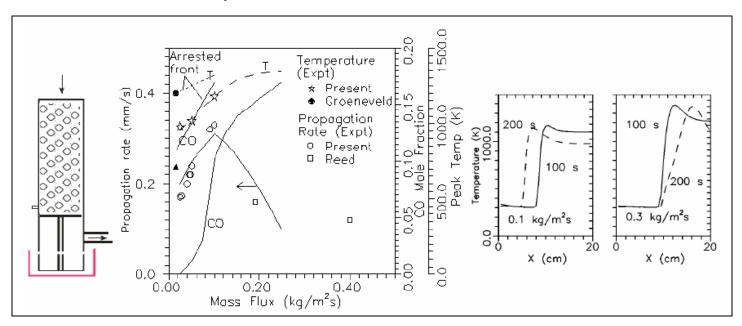
- Consistent high quality gas over the turn down ratio
- Varying biomass quality can accept all agro residues

The ratio of air flow rate from the nozzle to the top depends on the fuel properties - size, density; the char consumption rate, etc

Basic Research - Single particle

Reactants: (a) CO2 (b) H2O (c) air (d) O_2		
t _b ~ d ₀ ^{1.03}	CO ₂	Kinetic and diffusion dependence
$t_b \sim d_0^{1.2 - 1.3}$	H ² O	Kinetic and diffusion dependence
$t_{b} \sim d_{0}^{1.9}$	air	diffusion limited
$t_b \sim d_0^2$	02	diffusion limited

Conversion time for char reaction with 1. CO_2 is 3-4 times that of H_2O 2. H_2O is comparable to air at dp > 8 mm


Time for conversion depends on the particle density and diameter

Basic studies has helped in assessing

- Char consumption rate
 - o Depends on the concentration of O2, H2O and CO2
 - Has helped to use high density briquettes, coconut shell and other agro residues as fuels
- Char quality
 - For activated carbon
 - The reactions that occur in the gasifier produces high surface area; evident from single particle studies

Air flow rate through the nozzles decides the consumption of char - fixes air nozzle area

Basic Research - packed bed

With increase in mass flux the front velocity initially increases and then reduces

- This fixes the turn down ratio of the gasification system
- Superficial mass flux and ash properties are used as design parameters

Gas cleaning - process

- Gas has to be cooled and cleaned for end use application
 - Cooling by spraying water in scrubbers
 - Cleaning is achieved using chilled scrubbers.

With this gas cleaning process it is possible to restrict the contaminants to ppb levels

Gas cleaning

- After cooling
 - o Gas is saturated with moisture
 - Contains fine dust and condensable (~ 25 ppm) even after filtering
 - not acceptable to turbo charged engines
- Use the principle of condensation of moisture over nuclei of particulate matter
 - Scrub the gas using cold water (< 10 C)

- Dries the gas by condensing the water vapor
- This happens over the particles thus removing the particulate in sub microns levels
- The gas is dry and clean to ppb level Chilled scrubbers are currently being used in all the systems

Chilled scrubbers are currently being used in all the systems