Reflections on Developments in the Area of Supersonic Combustion Prof. H S Mukunda, CGPL -Dept of Aerospace Engg -IISc- Bangalore

Issues from the past

- Reduced mixing at high Mach numbers would have severe impact on scramjet combustor design in the late eighties
- Hints of "introducing an isolator between the intake and the combustor would be necessary"
- Design for high degree of combustion, but not complete

Background

- 1986 is an important demarcation year
- Earlier conceptual, experimental and developmental work seems to have been conducted in an uninhibited manner.
- Most later work has had the effect of the Cal Tech findings on reduced mixing at high Mach numbers -searching for better mixing techniques became an obsession

Why discuss these now?

- There have been five flight tests to demonstrate supersonic combustion or better, to demonstrate autonomous supersonic flight.
- The Russia-France and Russia-NASA flight tests on a Russian vehicle have shown supersonic combustion in one flight and there were problems with others.
- The Australian test was more an add-on of supersonic combustion demonstration with no clear vehicle aspects in mind.

- The lack-luster performance of the multi-country effort with hype on the difficulties associated with the mixing/combustion issues caused by fluid dynamicistshave led progressive S & T investors of being shy in supporting aggressive R & D efforts.
- Also, "young"scientists get carried away by the hype and may make additional contributions to impediments in investments.

-This is why it is necessary to review and draw upon the critical past that is "good".

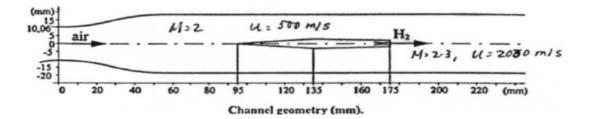
Reduced mixing at High M

IkawaH and Kubota T (1975), Papamoschouand Roshko(1986), Clemens and Mungalet al (1990)

12 10 0Papamoschou & Roshko (1988) Present Work 0.8 0.6 1 0.6 0.6 1 0.6 0.6 1 0.6 0.

5% and 95% Pitot pressure levels showing growth of the shear layers,

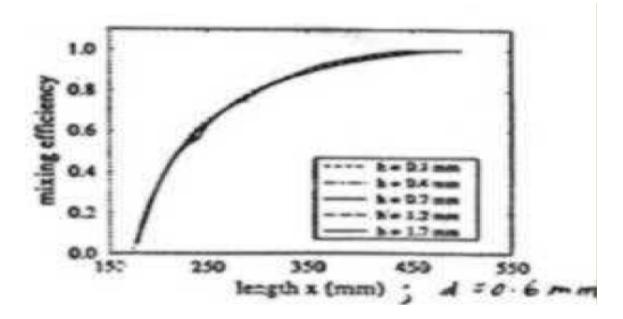
Analysis of the mixing behavior

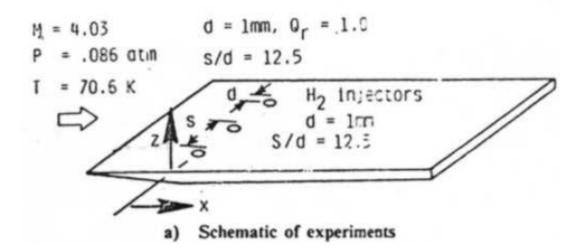

- $(\delta/x) = C1 (u2-u1) (1+\sqrt{s}) / (u2+u1\sqrt{s}) x [0.2 + 0.8 exp {-2(u2-u1)2/ (a1+a2)2}]$ where δ/x is the shear layer growth rate and s = density ratio, $\rho 2/\rho 1, C1 = constant \sim .17$
- Note that when u1is held fixed, but u2 is varied, the growth rate increases due to "incompressible" terms and decreases due to compressibility effect. This leads to a local maximum in the growth rate.
- Typically, u1= fuel speed ~ 1500 to 2000 *m/s*(H2, M = 1, T ~ 900 K)
- Air speed, u2~ 1650 to 2000 *m/s*(M ~ 2 to 2.5, T ~ 1000 to 1400 K)(u2-u1)
 ~ 200 to 300 *m/s*, Convective Mach numbers will be < 0.4
- The dynamics for liquid fuel injection will be affected in addition by spray dynamics as well as coupled gas dynamics
- Is there any problem due to compressibility at all?

Let us therefore look at

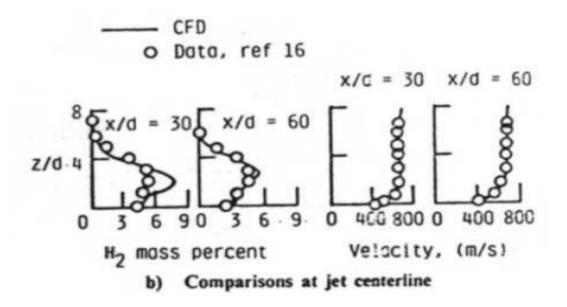
Experiments on mixing

- a. Gerlingerand Bruggeman, 2000
- b. Uneshi, Rogers and Nortam, 1989
- c. Gruenig, Avarshikovand Mayinger, 2000
- d. WilhelmiBaeltand Bier, 1973
- e. Guoskov, Kopchenov, Vinogradov, and Waltrup, 2001 f.Henry, 1969

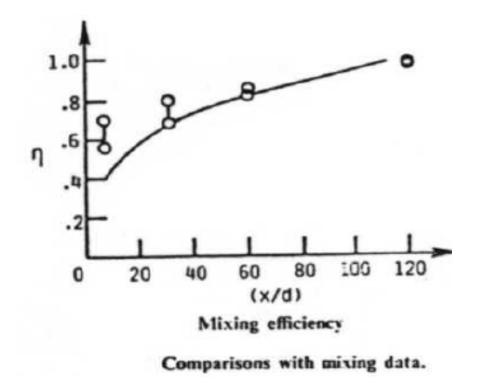

Gerlingerand Bruggeman, JPP, pp. 22 -28 (2000)


• Parallel injection, High convective Mach number; only mixing question is being addressed.

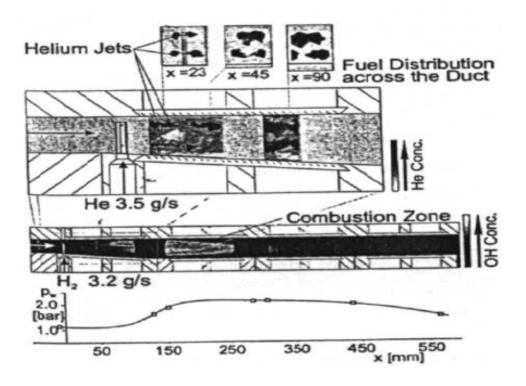
Gerlingerand Bruggeman, JPP, pp. 22 -28 (2000)

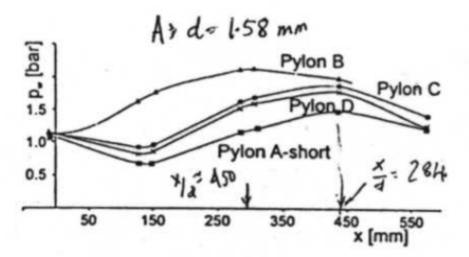


Mixing is fast in the early stages. Mixing for 95 % efficiency is 430 mm (x/d= 700 with parallel injection)


Uneshi, Rogers and Northam, JPP, pp. 158 -164 (1989)

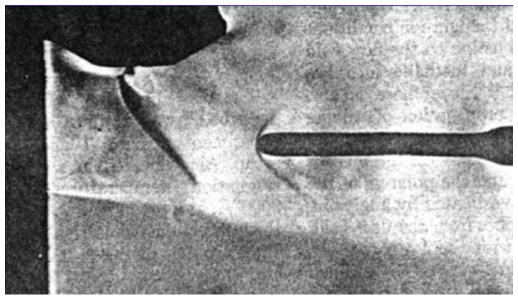
Perpendicular injection; only mixing related issues are of interest

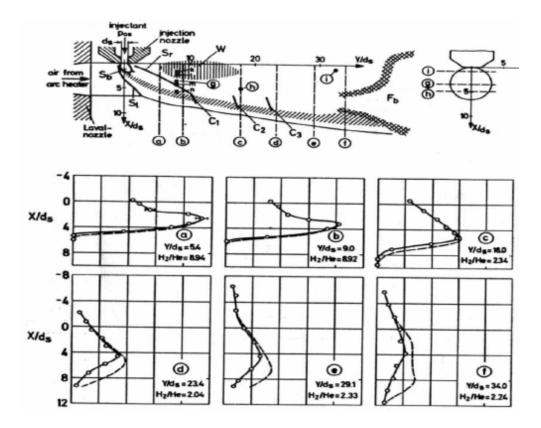



CFD -prediction of composition (mixing) seems very good.

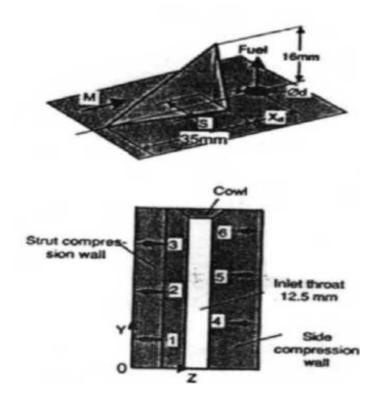
Mixing gets completed with x/d= 120 (perpendicular Injection).

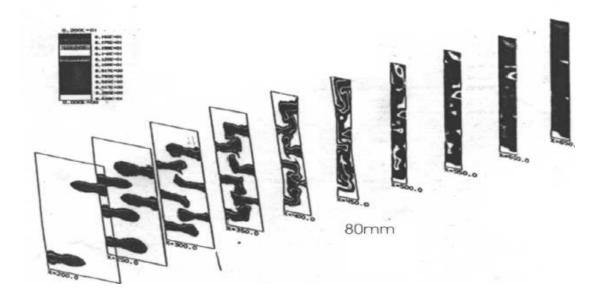
Gruineg, Avarshikovand Mayinger, JPP, pp. 35 -40 (2000)

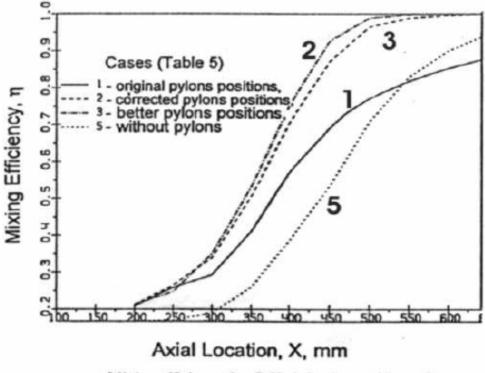



Static pressure distributions along the upper combustor wal for the tested pylons.

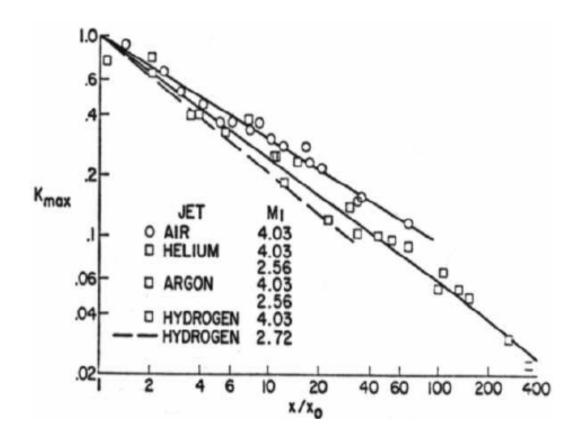
Combustion experiments in model combustors -X/d is between 300 and 450.




Mixing experiments with Hyd/Helinjected through a 1.56 mm nozzle vertically down into a M = 2, 1100 K stream


Mixing progress: At Y/d_s > 34 mixing is nearly complete. Guoskov, Kopchenov, Vinogradov, and Waltrup, JPP, pp. 1162 - 1169, 2001

Experiments on mixing with C₂H₄ injection from perpendicular holes 3. 4 mm dia. downstream of 6 pylons located at different axial distances



Pictures of mixed zones at distances 50 mm apart from 200 mmNote that at 300 mm all jets are injected and at 650 mm all are mixed

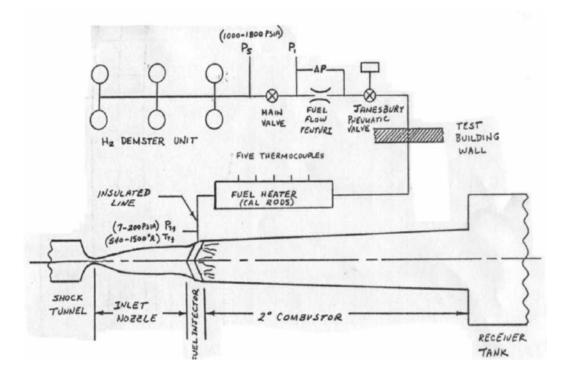
Mixing efficiency for C_2H_4 injection at $M_{\infty} = 6$.

Note that in a distance of 350 mm all mixing is complete Henry, 12thsymp (Int) on combustion, 1969

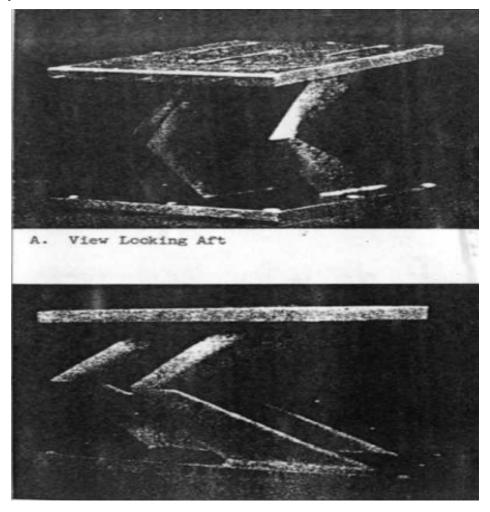
The diagram shows the variation of maximum concentration with Distance normalized by x0= 0.56 d0(ρ u)_f/ (ρ u)_{air}~ 0.1 to 0.25 d0With these values, x/d₀ will be 40 to 100.

Summary of mixing data

Author/s		(x/d) for 9	90 % mixing		
•	Gerlingeret al	700	(parallel Inj.)		
•	Uneshiet al	120	(perpendicular Inj.)		
•	Gruineget al	284 to 450	(perpendicular Inj.)		
•	Wilhelmiet al	40	(perpendicular Inj.)		
•	Guoskovet al	110	(perpendicular Inj.)		

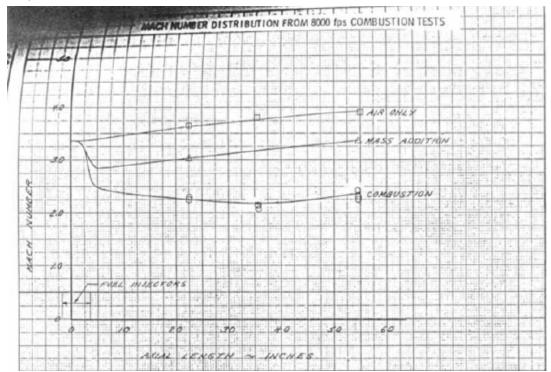

• Henry 40 to100

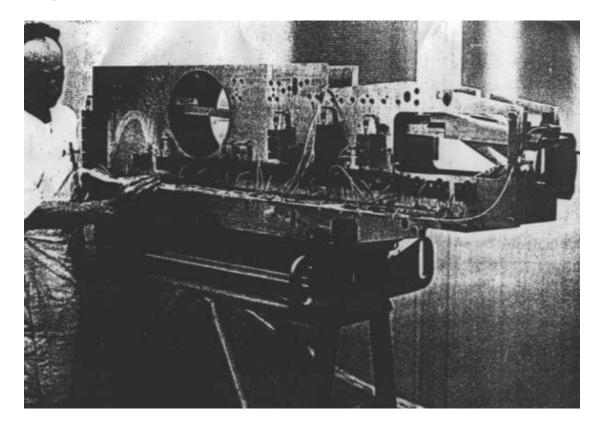
Mixing distances in perpendicular injection vary from x/d=100,+50.By reducing the injector diameter, one can reduce the mixing Distance. If d is chosen as 0.5 mm, one would need a distance not exceeding 75 mm for mixing for perpendicular injection and about 300 mm for parallel injection.


Combustion Experiments

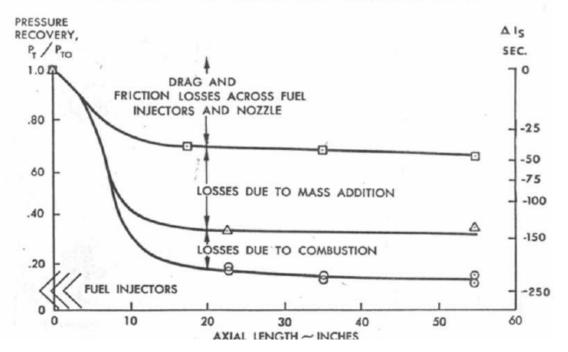
- Marquardt's Work, 1964
- Waltrup, Dugger, Billig, and Orth, 1977
- Tomioka, Murakami, Kudo, and Mintani, (2001)
- Yu, Li, Chang, Chen, Sung, 2001

Marquardt's work -1 (1964)

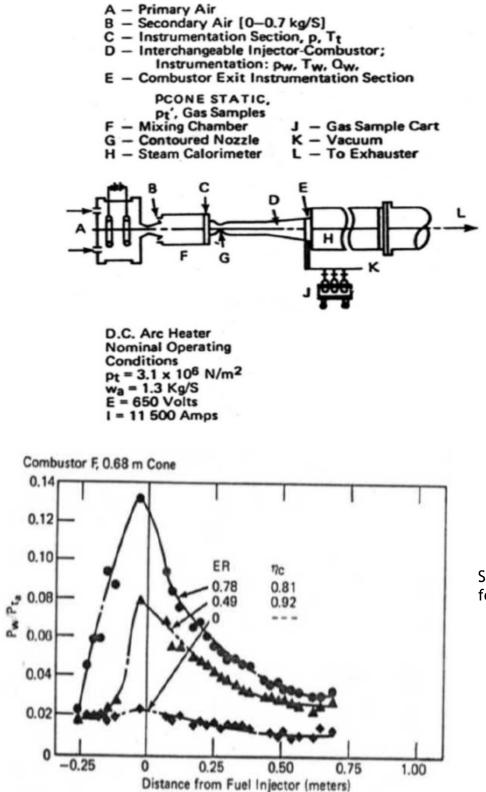

Marquardt's work -2 (1964)


Marquardt's work -3 (1964)

Marquardt's work -4 (1964)

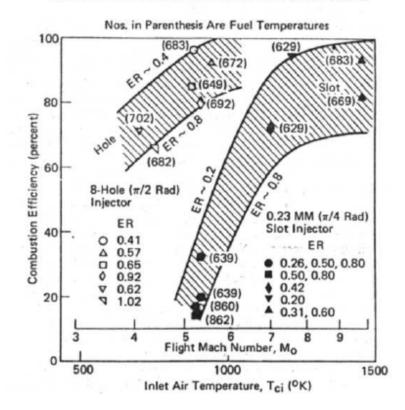


Marquardt's work -5 (1964)

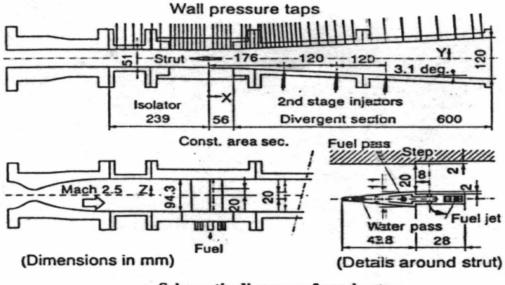


Marquardt's work -6 (1964)

FROM SUPERSONIC MIXING AND COMBUSTION TESTS

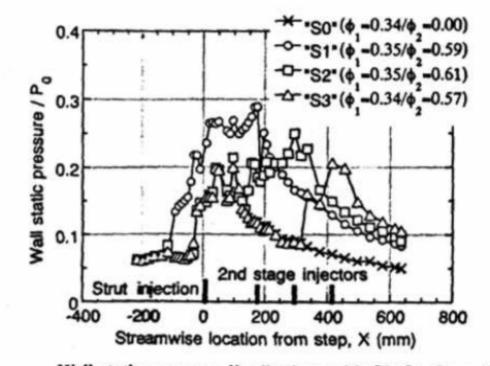


Waltrup, Dugger, Billig, and Orth, 16thSymp (Int) on combustion, 1977

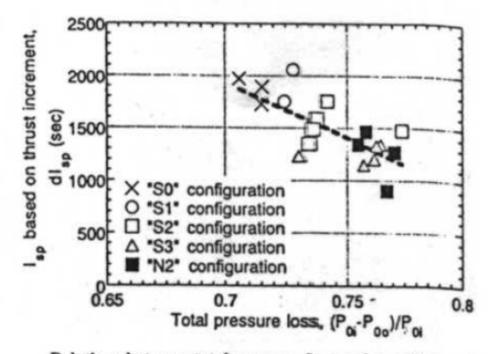


Side wall injectors for Hydrogen

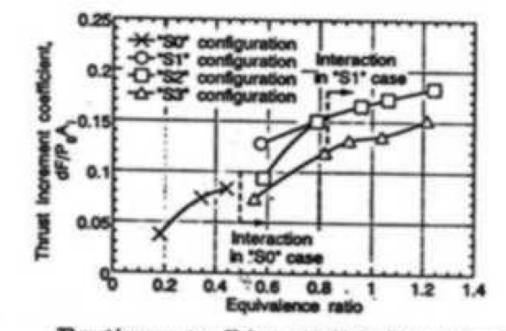
HYDROGEN-FUELED SUPERSONIC COMBUSTORS



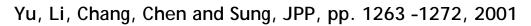
Tomioka, Murakami, Kudo, and Mitani, JPP, pp. 293 -300 (2001)

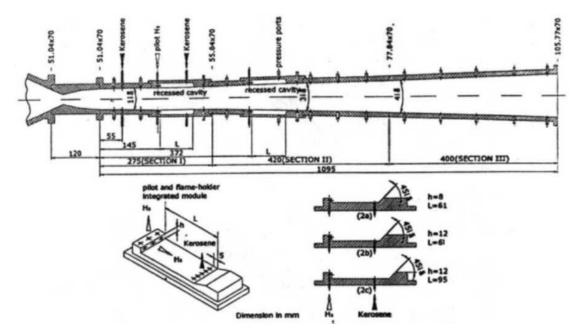

Schematic diagram of combustur.

Hydrogen injection from the struts/sidewalls at three locations

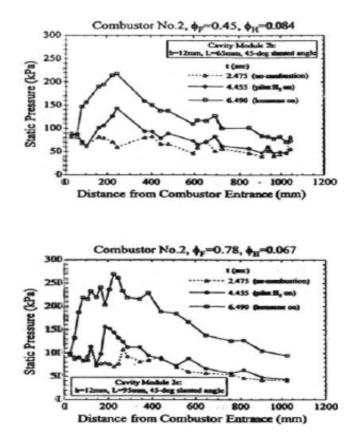


Wall static pressure, distributions with S0, S1, S2, and S3 configurations.


Note that even at Equivalence ratio = 0.91, combustion process isnot coupled to the intake.



Relations between total pressure loss and specific impulse in crement.



Thrust increment coefficients with S0, S1, S2, and S3 configurations.

They have tested a number of cavities and fuel injection systems

The tests used kerosene as the main fuel and a small fraction of Hydrogen as ignition/combustion facilitator.

...This in turn suggests that the cavity configuration might not have significant effect on the combustion efficiency, although it does affect the minimally required pilot hydrogen equivalence ratio.

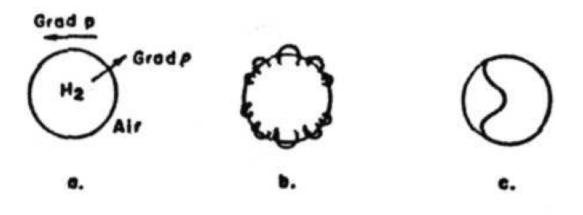
Summary of data

Author	Fuel Temp K	Air Temp K	Air M.	Stat. Pre. atm	Fuel Orifice Dia, mm	m(air), m(f)	A(Comb) /A(Fuel)	L m	φ Up t o	$_{p_s}^{\{(dp/dx)}_{max} \\ (1/m)$
Marquardt '64	~550 H ₂ .	1280	3.6	0.8	192 x ?	6, 0.15	127 x 84 /	0.8	0.9	12
Kanda et al, '97	150 H ₂ .	1550 (s)			24 x 1.5 + 94 x 0.5	0.14	200 x 250 /60 = 800		0.94	
Mitani, et al, '00	280 H ₂ .	1550 (s) 760(?)	2.0	0.2	24 x 1.5 (?)	4.76, 0.14	200 x 250 /42.4 = 1200	0.3	1.0	50
Gruenig et al, '00	150 H ₂ .	760 impure	2.15	1.0	1.58 or 4 x .66	0.33, 0.0032	25 x 27.5 /1.37 = 501	0.65	0.34	10
Owens et al, '01	H ₂ .	850 (s)	1.56		9 x 0.8 + 2 x 2.4		25 x 25 /13,5 = 46.2		0.71	4 - 35
Tomioka Et al, '01	300 H ₂ .	1550 (s)	2.5	0.5	10 x 2.5 3 x 8 x2.5		94 x 51 / 167.0 = 18.7	0.6	0.90	13
Yu et al,'01	300 Ker. + H ₂	1811 (s) 900	2.5	1.0	3 x 1.2 (Hyd) 5 x 0.4 (Ker)	1.5,	51 x 70 / 0.48 (K)	1.0	0.78	7 - 8

Note that the length of combustor required is about 0.65 m for hydrogen and 1m for Kerosene. The typical residence time < 1ms

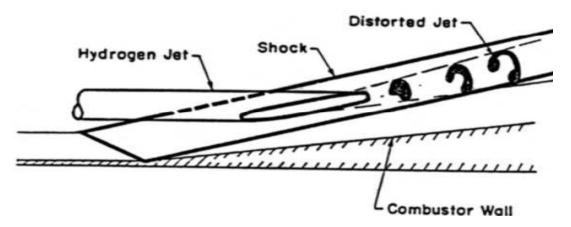
Hence,

Designs that are simple and in conception no different from what one would do for an after burner for flame holding are able to hold the supersonic flame and complete the combustion in a length < 1 m. Some of them were evolved before the concern for slow mixing was even known. Is this concern a researcher's hype?

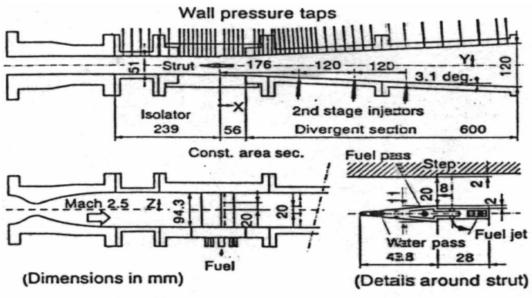

1. The convective Mach numbers in real cases are low.

2. Other effects aiding mixing must have been present....

One Fundamental input

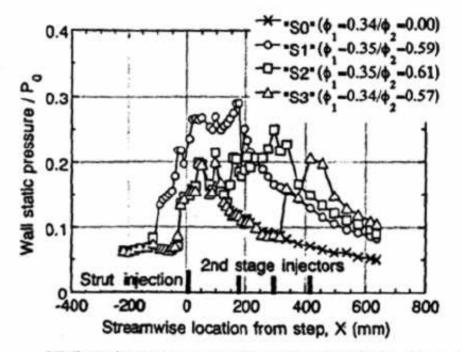

• Prof. Marble and colleagues have argued that the Rayleigh-Taylor instability induced at the interface of a light and heavy gas by a strong pressure gradient leads to the creation of streamwisevorticity

Marble, Hendricks and Zukoski, AIAA -87 -1880 (1987)


Vorticity and Distortion Induced by Shock Passage Over Hydrogen Cylinder in Air.

Marble et al, AIAA 90 - 1981 (1990)

Every supersonic reactive flow field in an engineered hardware has many protuberances leading to weak/strong shocks bouncing through the system. Hence the above effect is naturally incorporated into the flow field. An Isolator for a scramjet


- A constant area section of sufficient length is introduced between the air intake and the combustor, so that
- Under varying flight conditions the upstream interaction of the combustor does not reach the air intake.
- Many experiments -Gruber, Mathurand Billig, and others from the USA, Mitani, Kanda, Tomioka, Chinzeifrom Japan and others as well have used in tests.
- This has happened to an extent that the absence of isolator is considered unthinkable in design.

Tomioka, Murakami, Kudo, and Mitani, JPP, pp. 293 -300 (2001)

Schematic diagram of combustur.

Notice the isolator 239 mm long

Wall static pressure, distributions with S0, S1, S2, and S3 configurations.

Note that for cases S2 and S3, the sharp rise in pressure occur swith very little of the isolator.

Isolator - contd.

- There are other experiments in which the irrelevance of isolator is clear.
- There are cases where the isolator is shown to be necessary could be handled differently without it.
- For fixed flight conditions, or even a fixed set of flight conditions, one can design the fuel injection system so *that graded heat release occurs in the combustor* so that upstream interaction can be eliminated.
- This would help the elimination of a lossy intermediate element.

Incomplete Combustion as a design goal?

- Prof. Swithenbankenunciated thus:Mixing efficiency, a combination of stagnation pressure loss due to turbulence, quantified simply $-\eta_m = 1 3 (u'/U)^2 max$
- Combustion efficiency improves due to turbulence -

 η_c = 1 / [1 + 1/ {50 (u'/U) max}]

The combination has an influence on the Specific impulse such that there is a maximum with turbulence level and therefore withcombustion efficiency. He therefore predicated that one should not burn the fuel to efficiency higher that what is permitted as above.

- The analysis is simple no doubt, but tends to be "simplistic", since the flow is complex and 3-D; it is difficult to imagine if the characterization of the entire process goes this way.
- No other studies seem to have followed the principles stated above. High combustion efficiencies seem to have been achieved.
- Instead of achieving less than 100 % efficiency: Cannot one burn less fuel (φ< 1) but completely so that heat release is limited and hence losses too?

Final Remarks

The design of scramjets can follow the traditional principles excepting that the high speeds can be very punishing in terms of performance loss for small mistakes. This only requires advanced tools of design like *calibrated*CFD to enhance the reliability in the design.