Turbine Cogeneration Technology for Energy Efficiency in Industry

TurboTech Precision Engineering Private Limited
Bangalore

The Problem

ELECTRICITY COSTS ARE RISING RAPIDLY, SQUEEZING OPERATING MARGINS

The Solution

MAKE THE PLANT AS
ENERGY EFFICIENT AS
POSSIBLE,
PREFERABLY USING
EXISTING RESOURCES

Cogeneration: Best Option for All Process Industries

- COmbined GENeration of heat and power
- Most steam users can now benefit from cogeneration, regardless of size
- Promoted by all national and international agencies involved in energy efficiency

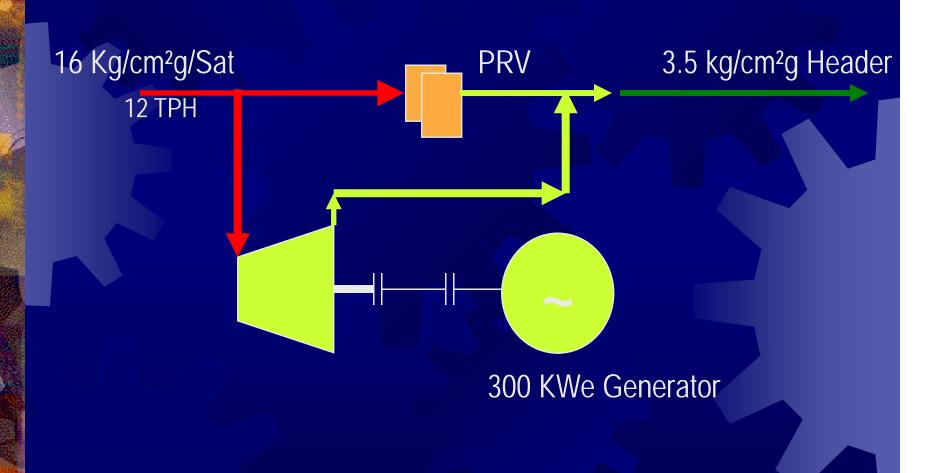
The Hidden Resource

- Steam is generated in industry at higher than required pressure
- Usage pressure is generally much lower than generation pressure due to constraints in steam generation
- In a typical case high pressure saturated steam is obtained at 16 bar and is used at 3.5 bar Saturated for process
- Steam is let-down in a Pressure Reducing Desuperheting Station (PRDS) from HP Header Pressure to the Usage Pressure TurboTech Precision Engineering Private Limited 28/29 Second Main, Rajajinagar Industrial Town, Bangalore – 560 044.

The Hidden Resource (contd)

- The Pressure Energy (Potential Energy) is converted to useless Turbulence & Noise in the PRV
- This Pressure Energy can be converted to Useful Electrical Power by passing the steam through a Back Pressure Steam Turbine (BP Turbine)

Current Scenario


16 Kg/cm²g/Sat 12 TPH

3.5 kg/cm²g Header

NO POWER GENERATED

Turbo Tech Solution

TurboTech Precision Engineering Private Limited

28/29 Second Main, Rajajinagar Industrial Town, Bangalore – 560 044.

TurboTech Solution

- Install back pressure steam turbine for incidental power
- Steam from 16 kg/cm²g/Saturated is brought down to 3.5 kg/cm²g @ 12 TPH for Process
- In the process generate Incidental Power of 300 Kwe
- Save Rs. 105.0 Lakhs annually on power (Based on current cost of power of Rs. 5 per unit)

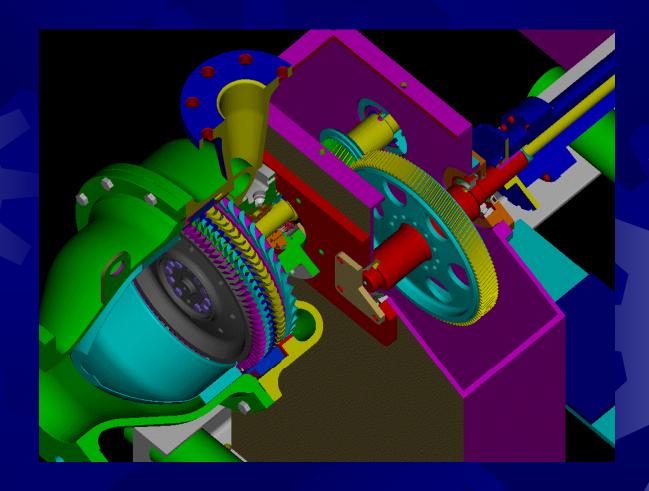
Turbo Tech Solution

Operating Principles of a Simple BP Steam Turbine

- Pressure Energy in the steam is converted to high velocity in the nozzle (about 1,800 km/hr)
- The high-velocity steam is impinged on the blades on the turbine wheel, which are thus given a "kick" (impulse)
- The turbine wheel rotates the generator to produce electricity

What Happens to the Steam?

The steam pressure is reduced to the controlled usage pressure, and then flows to the process


Desirable Features for a Process Steam Turbine

- Must operate on any Steam
- High efficiency for min. payback period
- Light-weight and compact for ease of installation in cramped space
- Precisely controlled back pressure to plant

ECT Steam Turbines

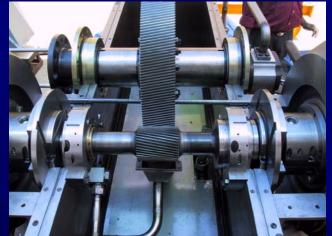
ECT Steam Turbines

The ECT: Precisely Designed for Industry

- Operates using existing Steam available(Minimizes investment)
- Best efficiency in its size class (10 20% better)
- Less than 3 tonnes weight and very compact (W x L x H : 5' x 10' x 6')
- Precise Plant Steam Control

Description of ECT

- Impulse/ Curtis Stage turbine, directly coupled to Step-Down Gearbox, driving an Generator
- Power Rating: 75 to 500 kW
- All steam-wetted parts are Stainless Steel for long corrosion-free life
- Turbine is machined from a solid Hardened Stainless Steel forging for maximum life in any Steam service
- Precision CNC milled aerodynamic blading


Description (contd.)

- Hardened and ground Precision Helical Gears for long-life, low noise and high efficiency
- Unitary Skid for all equipment, single compact unit, factory assembled, aligned and tested, ready for hook-up to steam and electrical services at site
- No civil work foundations required, as skid is mounted on Anti-Vibration Rubber Mounts

Description (contd.)

Description (contd.)

- Minimum plant impact, with steam pressure control within +/- 0.1 kg/cm²
- PLC Controls for maximum ease of use
- Redundant in-built safety features
- Multi-sensor Fail-safe trip system
- Fully automated, No dedicated operator required

Payback Details

- Investment:
 - ECT system
 - IBR Piping
 - Electrical hookup
 - Services : water, instrument air
- * 80% Depreciation allowed in First Year according to current IT Rules
- Payback: 9 Months 2 Years

Project Cost 300 Kwe Installation

Rs.in lakhs

Turbine basic cost	39		
E.D(16.32%)	6.36		
C.S.T(4%)	1.81		
Supervision of Erection	3		
Freight	0.2		
Expansion Bellows	0.6		
Turbine Erection	1		
Electric Cabling	1		
Steam Piping etc.	2		
Civil Work	0.5		
Miscellaneous	1		
Less modvat	6.36		
TOTAL INVESTMENT	50.11		

Payback Analysis

Power cost

No.0f hours per year

Power generated

Savings in power per year

* Payback

5.0 Rs./unit

7200 hrs.

300 kw

108 Rs.(lakhs)

Cost of machine + installation 50.11 Rs.(lakhs)

6 months

Why 300 KW ECT Now And Not 2 MW COGEN Later?

- Cost of 2 MW power plant would be Rs. 5.0 + cr.
- Delivery and time for commissioning would be 24 months approx.
- During this time ECT would generate Rs.1.5 cr.
 Approx. after paying itself back
- ECT could be then used to generate atleast 150 KW of extra power across the deareator PRV saving another Rs. 50 lakhs p.a.

Why Sat. Steam Turbine and not Super Heated Turbine

- Super heated(SH) turbine requires a superheater in the boiler. Hence Cost
- SH turbine requires a desuperheater down stream as all processes use sat steam. Involves investment and running cost
- SH boiler requires de-min water. Again investment and running cost
- Lastly and not least INCREASE IN FUEL CONSUMPTION in SH steam boiler (approx. 15-22% increase)

Comparison of power generation with Sat steam and SH Steam

COST COMPARISION FOR SATURATED V/S SUPERHEATED STEAM

	Parameters	Units	Superheated steam	Saturated steam
1	Inlet pressure into turbine	kg/cm2g	42	42
2	Inlet temp. into turbine	Deg.C	440	sat(238.3)
3	Outlet pressure out of turbine	ata	3.5	3.5
4	Inlet enthalpy of steam	KJ/kg	3305	2800
		kcal/kg	789.5365504	668.8963211
5	Enthalpy of feed water	kcal/kg	50	50
6	Heat added in boiler	kcal/kg	739.5365504	618.8963211
7	Fuel used	bagasse		
8	Calorific value of fuel	kcal/kg	2200	2200
9	Efficiency of boiler	%	68	68
10	Nett energy required in boiler	kcal/kg	1087.553751	910.1416486
11	Amount of steam generated from a kg of fuel	kg	2.022888523	2.41720616
12	Cost of fuel per kg	Rs./ton	1000	1000
		Rs./kg	1	1

TurboTech Precision Engineering Private Limited

28/29 Second Main, Rajajinagar Industrial Town, Bangalore – 560 044.

Comparison of power generation with Sat steam and SH Steam

13	Cost of steam	Rs./kg	0.494342614	0.413700749
14	Water treatment costs	Rs./kg	0.2	0.1
15	Total steam cost	Rs./kg	0.694342614	0.55837038
16	Exhaust Enthalpy of steam	KJ/kg	2972	
		kcal/kg	709.9856665	
17	Amount of heat lost in desuperheating	kcal/kg	41.08934544	
18	Total heat in desuperheating	kcal	410893.4544	
19	Nett steam generated in desuperheating	kg./hr	614.2857143	
20	Boiler capacity	TPH	10	10
21	Nett steam generated	TPH	10.61428571	9.2
22	Wetness of steam	%		0.92
23	Loss of steam generation			0.8
24	Amount of fuel required for amount of steam prod	kg./hr	4943.426139	4137.007494
25	Amount of steam per unit of power	kg/kw-hr	12.48739496	15.20661157
26	Cost of steam for power alone	Rs.	1359.722341	446.6963038
27	Power generated	KW	850	605
28	Cost of power	Rs./unit	1.599673343	0.738340998
29	Extra Power due to superheated steam	KW	245	
30	Cost of Extra Power due to superheated steam	Rs./unit	5.549887108	

TurboTech Precision Engineering Private Limited

28/29 Second Main, Rajajinagar Industrial Town, Bangalore – 560 044.

Acknowledgement

• We have 62 installations in operation nation-wide and 20 more in execution. We gratefully acknowledge the encouragement and support of our customers.

Conclusion

Turbine Cogeneration Technology offers exciting opportunities for energy cost savings to Industry.

TurboTech is committed to servicing the needs of the Industry, with innovative and cost-effective products.