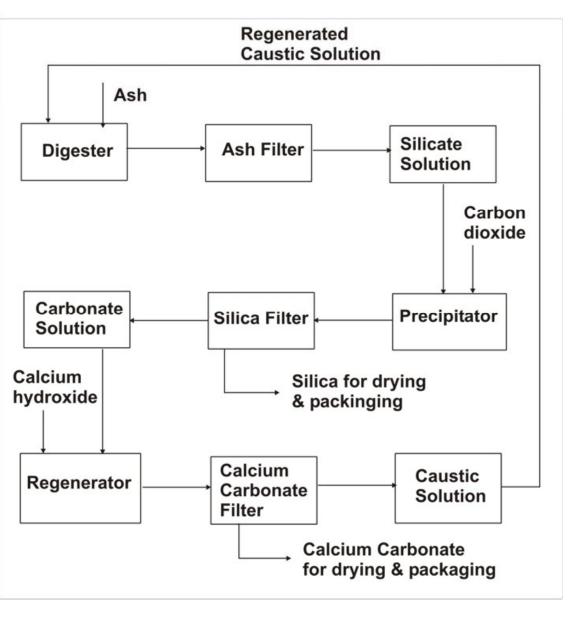
Precipitated Silica from Rice Husk Ash

ABETS CGPL, IISc

Motivation

- Rice husk is a widely available agricultural waste India produces around 25 million tons of Rice Husk
- It is largely used as a fuel—in small scale, and in large scale for electrical power generation and thermal needs
- Rice husk contains 20 % ash and leaves large amount of residue (about 25 %) after it is burnt causing a disposal problem
- Silica is the main constituent of the Rice husk ash (~ 90 %)
- Precipitated silica is a high value product (Rs. 40 per kg) having applications in rubber, cosmetics, tooth paste and many other industries
- Production of precipitated silica from rice husk thus solves the disposal problem ash and provides additional revenue stream
- This process is cheaper production cost about Rs. 22 – 24/kg of silica


Uses of Precipitated Silica

- Rubber industry as an reinforcing
 agent
- Cosmetics
- Tooth pastes as an cleansing agent
- Food industry as an anti-caking agent.
 - Paints as a filler

The Process

Flow Chart of Precipitated Silica

Digestion

- Heating of rice husk ash with caustic solution at specific conditions results in extraction of insoluble silica from ash as soluble sodium silicate.
- The slurry is filtered and clear filtrate taken for precipitation.
- Residual undigested ash containing mainly carbon with Iodine number of 300 – 400 being tried for improving the same/for water treatment.
 - $xSiO_2 + 2NaOH ---- \rightarrow Na_2O.xSiO_2 + H_2O$

Precipitation

- The most crucial step carried out in two stages.
- Carbon dioxide is passed into the sodium silicate solution at designed conditions.
- Sodium silicate reacts with carbon dioxide to form Precipitated Silica and Sodium carbonate.
- The slurry is filtered and clear filtrate taken for re-precipitation for removal of small quantities of unprecipitated silica.
- Reprecipitation carried out similarly to precipitation – slurry is filtered and the clear filtrate taken for Regeneration.
 - $Na_2O.XSiO_2 + CO_2 ---- XSiO_2 + Na_2CO_3$

Regeneration

- The caustic required for Digestion is regenerated in this step.
- Sodium carbonate solution reacts with calcium hydroxide to form caustic solution and precipitated calcium carbonate.
- The calcium carbonate slurry is filtered and the clear caustic solution is taken for Digestion.
- Precipitated calcium carbonate is marketed/or it can be heated give Calcium oxide and used again for the regeneration.
- 95 % of the caustic used is regenerated.
 - $Na_2CO_3 + Ca(OH)_2 ---- \rightarrow 2NaOH + CaCO_3$

Typical Properties of Precipitated Silica

- Nature:
- Appearance:
- Purity:
- Surface Area:
 - Bulk density:
- Loss on Ignition:
- pH of 5 % slurry: 6.3 ± 0.5 • Particle size: $1-30 \ \mu m$

Amorphous powder White fluffy powder > 98 % $100 - 350 \text{ m}^2/\text{g}$ 100 - 400 g/l 3.0 - 6.0 % 1-30 µm

Features of the Process

- All operations are carried out at temperature less that 100°C
 - Current commercial production is from sand and uses 1500°C for digestion
- CO₂ is used for precipitation—Caustic can be regenerated. The byproduct, precipitated calcium carbonate is a marketable—or Ca(OH)₂ can be regenerated
 - Current commercial production utilizes acid precipitation.
- Environmentally friendly as the chemicals used are regenerated. Rice husk ash a nuisance at large capacities is taken care off.
 - Current commercial production using acid precipitation results in formation of sodium sulphate as effluent and requires effluent treatment.
 - Comparatively low cost of production at around Rs. 22 -24/kg (by around 20 %) compared to commercial process of silica and value addition by sale of calcium carbonate.
 - Green Silica Renewable raw material source compared to conventional process using sand from beautiful beaches

Plant Economics

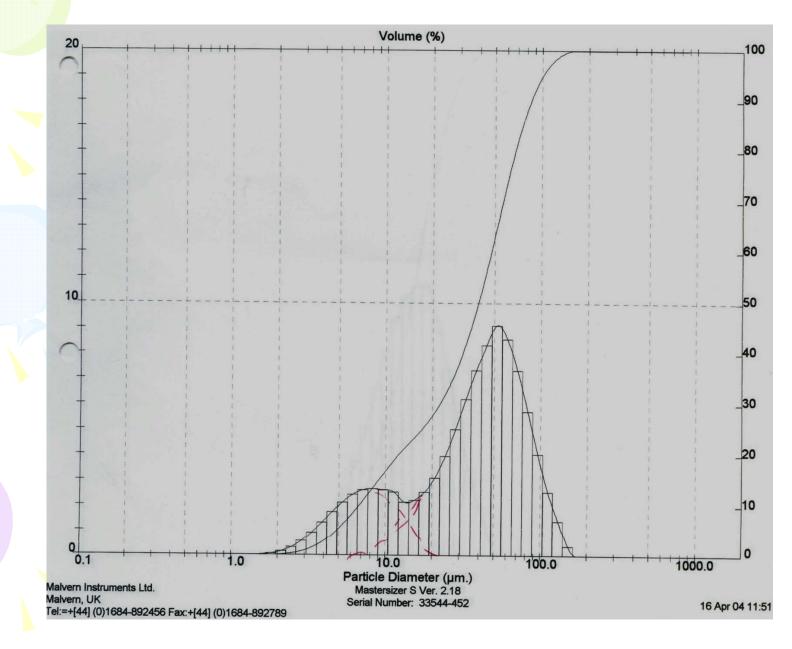
	ed Ash requirement for 1 ilica: 1.6 tons dry	Silica Capacity – 24 MT/day	Silica Capacity – 5.0 MT/day Plant Cost ~ Rs. 65.0 million	
		Plant Cost ~ Rs. 240 million		
SI. No	Particulars	Cost in Rs. Per kg of Silica	Cost in Rs. Per kg of Silica	
1.	Raw Material	7.0	7.0	
2.	Cost of Manpower	2.0	2.5	
3.	Maintenance Cost	1.6	1.9	
4.	Power cost @ Rs. 4.0/kwh	4.1	4.5	
5.	Packing, Handling & Transportation	2.0	2.0	
6.	Thermal energy	6.1	6.3	

Plant Economics - continued

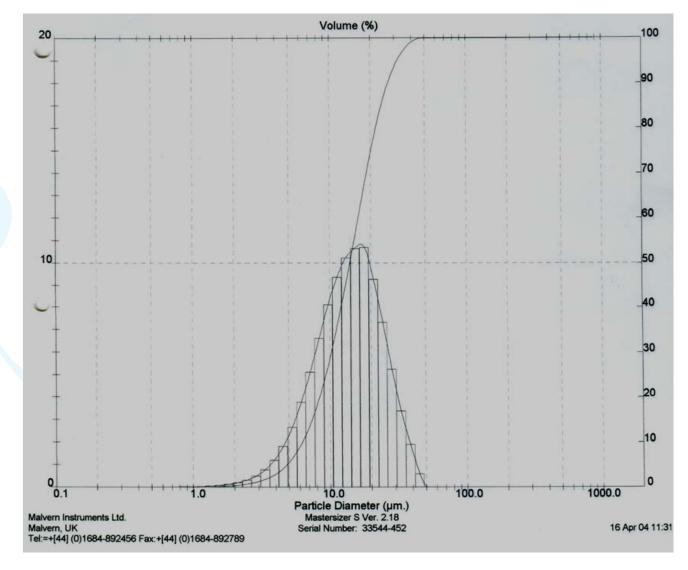
	Estimated Ash requirement for 1 ton of silica: 1.6 tons dry		Silica Capacity – 24 MT/day Plant Cost ~ Rs. 240 million	Silica Capacity – 5.0 MT/day Plant Cost ~ Rs. 65.0 million	
	SI. No	Particulars	Cost in Rs. Per kg of Silica	Cost in Rs. Per kg of Silica	
	8.	Total Production Cost	22.80	24.20	
	9.	Revenue Generated			
		Cost of Silica/kg	40.0	40.0	
		Cost of CaCO3/kg	6.0	6.0	
4		Total	46.0	46.0	
	10.	Depreciation (10 years)	3.0	3.6	
	11.	Interest @ 10 %	3.0	3.6	
	12.	Net Profit	17.20	14.60	

Problems resolved during the Development

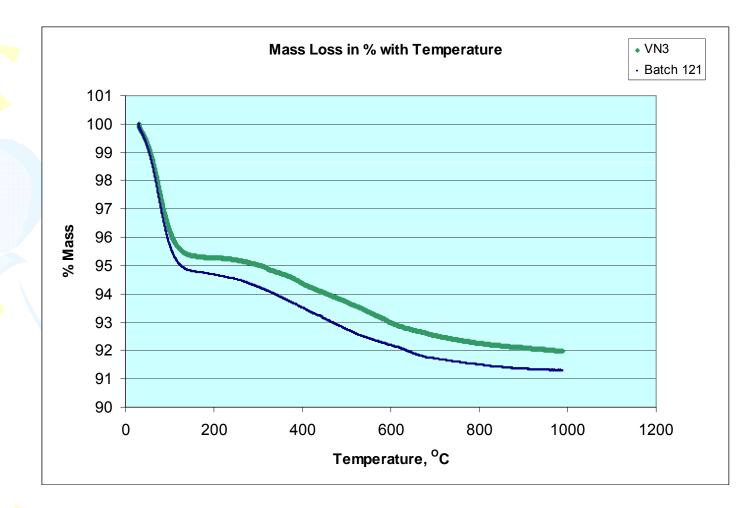
- Controlling the properties of the product
 - Purity and other chemical properties were easy to control
 - Surface area and bulk density were much more difficult to control
 - The precipitation step is the critical step
 - More than 100 experiments conducted to identify the controlling parameters


Parameters Affecting the Properties

- Concentration of silicate in the solution
- Rate of carbonation
- Agitation of the solution while carbonation
 - Design of the stirrer and its location
 relative to the CO₂ injection ports
- Mode of CO₂ injection—velocity of injection, number and distribution of injection holes
- Extent of carbonation


Comparison of IPSIT silica with VN3

Seria I No	Particulars	Unit	VN3 Range as per NIPSIL	VN3 Lot No 3BU11 - Specs	VN3 as per Lot No 3BU11- Analysis - IISc	I.I.sc. Silica
1	Weight	Kg		20	Received - 5 kg	
2	Water Content	%	9.0 or below	4.6	5.20%	4.50%
3	PH	4% Susp.	5.5 - 6.5	6.0	5.23	6.6
4	Tap Density	g/l	120 - 160	152.0	260	175
5	BET Specific Surface Area	m2/g	180 - 230	220.0	217	229
9	Particle Size(150µabove) by Sieve	%	7 or below	1.2	90 % - 84 microns	90 % - 27 microns
					50 % - 39 microns	50 % - 14 microns
					10 % - 6.74 microns	10 % - 6.2 microns


VN3 – Particle Size Distribution

IISc Silica Particle Size Distribution

TGA Analysis of VN3 and IISc Silica

Concluding Remarks

- Ready for commercial launch.
- Licensed to IVY Japanese form
- Pilot plant of 50 kg/day is being set up along with IVY – Biosilica
- Commercial plant of around 24 TPD to be set up later

Thank you