PRODUCER GAS ENGINE

http://cgpl.iisc.ernet.in

email: abets@cgpl.iisc.ernet.in

Background

- Scenario in 1995 96
 - > Spiraling crude oil resulted in dual-fuel operation to be expensive
 - > Forced technologists to adapt 100% gas engines
 - > No gas engines commercially available for producer gas
 - > No engine manufacturer was favorable for producer gas
 - o Market potential not clearly defined
 - o Issue of gas contaminants a major one
 - > Research & development was initiated at this laboratory

Major Milestone

- Phase I (1996 1998) Basic research on a three cylinder, hi comp. ratio gas engine (20 kW) converted from a diesel engine; satisfactory 100 hours test.
- Phase II (1999 2001) Adapted Greaves bio-gas engine (250 kW); Gas carburetor developed; Cumulative experience of 100 hours in the lab.
- Phase III (2002 onwards) Adapted Cummins NG engines; Lab testing of two engine models along with Cummins; long duration trials 75 hrs test; 3.0 MW installed in field, joint monitoring in progress; 25 kW engine for village project being tested.

Power generation using producer gas

What is dual – fuel operation?

Merits

- Easy for retrofitting with existing diesel engine without any modifications
- Plant availability higher utility will not suffer due to non-availability of gasifier
- Economical compared to fossil fuel diesel

De-Merits

• Expensive can't compete with State grid electricity

Gas Engine option

Merits

- Economical and can compete with State grid electricity
- Plant availability reasonably high provided correct operation practice are adhered to!
- Environmental friendly emission meets pollution norms

De-Merits

- Start-up power required where grid is not available
- Not suitable if gas quality is poor (energy content low & contaminants high)

The Approach

- Basic Research Experimental & Modeling
- Development of gas carburetion system
- Reliability tests Long duration trails
- Collaborative work with Cummins India
 - Adaptation of Natural gas engines
 - Laboratory trails & Field monitoring
- Open for collaborative work with other engine manufacturers

How is PG different from NG engine?

- The air-to-fuel ratio of PG is 1.3:1, whereas for NG it is 17:1 this calls for a different carburetor
- PG has higher octane rating, therefore can be used in engines with higher Compression ratio
- The flame speed of PG is higher ~ 20%; calls for a different ignition timing setting
- The energy density of PG is lower ~ 20%, this causes de-rating of the engine power
- The flame temperature is lower by about 300 K, implies different operating condition in the engine cylinder and turbocharger

Analysis of Producer Gas Engine

Results of Basic Research

- Operation of gas engine with PG is possible without any limitation due to knock, this implies:
 - higher compression ratio (CR) can be adapted
 - ➤ Efficiency > 30%
 - > Higher power for a given engine volume size
- Maximum de-rating of 16% at 17 CR, 26% at 11 CR
- Optimum ignition timing for NG different from NG
- The peak cylinder pressure is found to be lower compared to a diesel engine at comparable power level; this implies less wear and tear
- Emission friendly; low NOx & CO level

Why need for a different Gas Carburetor?

- 1. The air-to-fuel of NG is about 17:1(mass basis), whereas for PG it is about 1.3:1
- 2. NG carburetor requires gas under pressure ~ 1 bar, whereas PG is available at low pressure

Designed to meet variable load operation

Collaborative work with Cummins

- ➤ It was hard to convince Cummins to offer their NG engine for PG
- > Cummins laid a condition that engine needs to qualified on PG
- > Two models of engines were tested at the laboratory
- > Tested for 75 hours at the laboratory; two 24 hour run active participation from Cummins
- > Systematic trail conducted energy input, power output and emissions were measured
- > Condition of engine components were checked prior to and after the trail

Trails at the Lab ...

Engine Components

24 hour run

All engine components – throttle, manifold and valve were clean

Outcome of the collaborative work

- The laboratory trails very encouraging for Cummins; impressed with the gas quality & overall performance
- Initially 2 Engines were offered for commercial operations with close monitoring jointly by Cummins & IISc
- One engine has satisfactorily undergone this monitoring
- Today there are more than 12 installations with an installed capacity of over 3.0 MWe.
- Currently qualifying a 25 kWe engine for rural electrification package

Typical Applications

Application	Requirement			
Rural Electrification	•Short duration ~ 4 – 6 hour/day, low PLF			
	•High plant availability > 95%			
	•Load reasonably constant			
Industrial - Captive	•Continuous operation – 24 hr x 6/7 day a week			
	•High plant availability > 90%			
	•Large load fluctuations			
Independent Power	wer •Continuous operation – 24 hr x 7 day a week			
Producer – grid lined	•High plant availability > 90%			
	•Large load fluctuations			

Producer gas engine can meet each of the above applications

Energy Service Company - ESCO

Bagavathi Bio-Power @ Metupalyam, TN, India

The Company

- Group Company of United Bleachers Limited, Mettupalayam, TN, one of the largest textile processing facilities in Tamil Nadu.
- UBL Imports over 270 kWe of power from TNEB grid @ Rs. 4.50 (US c 10)/kWh

The Power Plant

- 120 kWe power plant supported by 150 kg/hr Gasifier). Commissioned in August 2003.
- 100 % gas based system with Cummins gas engine GTA 855 G
- Feedstock is coconut shell & Julifora Prosopis
- 300 kg/hr waste heat drier installed to dry biomass with free energy from engine exhaust

Plant Configuration

Snap Shots

The Power Plant

Gasifier Unit

PG Engine

Effluent Treatment

The Arrangement

Performance

- Max output of 134 kWe at an optimum ignition timing of 22° CA; nominal output is120 kWe
- 30 40% fluctuation in load
- Duty cycle 24 hours x 6 days
- Specific biomass consumption 1.1 <u>+</u> 0.1 kg/kWh
- Biomass-to-Electricity: 22 24%
- Operated for more than 7500 hours

Producer Gas Composition

 $H_2 \& CO: 19 \pm 1\%$; $CH_4: 1.5\%$; LCV 4.7 + 0.1 MJ/kg

Cold Gas Efficiency: 80 - 82%

Emission

Emissions Norms

Parameter/Countr	y USA	EU	Japan	India		
CO	3.06	1.4 - 1.8	1.67	1.25 (3.9)		
NOx	2.56	2.56	2.6 - 3.06	2.22 (5.0)		
НС	0.36	0.36	0.4 - 0.56	0.3 (0.98)		
PM	0.15	0.15 - 0.24	-	0.1 -0.2 (<3.5 Bosch)		
KOEL Engine results between 6 to 20° CA for all CRs at $\Phi = 1.0 - 1.2$						
Parameter/CR	17.0	14.5	13.5	11.5		
CO	1.1 – 11.0	11.0 – 15.0	4.0 –16.0	9.0 –14.0		
NOx	0.03 - 0.28	0.02 - 0.22	0.03 -0.20	0.05		
PM	< 0.014					
Greaves Engine results between 12 to 24° CA for CR=12.0 at Φ = 0.94 - 0.97						
CO	0.58 - 1.2					
NOx	0.32 - 0.7					
PM	< 0.0005					
Cummins Engine results between 22 to 24° CA for CR=10.0 at Φ = 1.01 -1.03						
CO		0.4 -	- 1.8			
NOx	0.2 - 0.7					
PM	<< 0.0005					

Joint field inspection by IISc & Cummins after 3000 hours

Compressor Casing

Compressor Impeller

- Least amount of deposits on the engine components ~ particulate matter < 200 ppb
- Spark plug found clean
- No wear of cylinder liner

Lube Oil Analysis

Parameter	Fresh Oil	Used Oil (496 hrs)	Limit*
Kinematic viscosity @ 40° C, cSt	114	95	Low - 85 High - 155
TBN, mg KOH/g	5.7	2.2	2.0

*as per Cummins

- Oil quality inspected after every 200 hours and well within the qualifying limits
- No water content in the oil
- Wear metals < 100 ppm
- Oil change recommended at 500 hours

Techno-Economics

Investment Details

Capital Investment: 100,000 US\$

Federal Govt. Subsidy: 27,000 US\$

Electricity Generation Cost	US Cent/kWh
Feed stock	3.4 (2.7 per kg)
Maintenance	0.35
Labour	1.0
Sub-Total (A)	4.75
Depreciation (B) at 6% per annum	0.45
Sub-Total (A+B)	5.20
Revenue from Charcoal (C)	0.50
Net Generation Cost (A+B-C)	4.70
Grid Electricity	10.0
Sale of Electricity	7.70
Income for 0.6 Million units/year	18,000 US\$
Return on Investment (with out subsidy)	18%
Return on Investment (with subsidy)	25%

Achievements

Scenario (end of 2005)

- Knowledge base on PG engine operation has been established
- Technology demonstrated with better reliability and uninterrupted operation
- Issues w.r.t. gas engine/s satisfactorily addressed
 - Technical issue w.r.t turbocharger on larger engine
 - Cummins considering extending warranties on engines with PG
 - Cummins willing to label gas engines as PG engines and market them
- Currently turbocharger basic studies are on to optimize the performance further
- More than 12 units totaling to 3.0 MWe equivalent plants working; Cumulative experience > 27,000 hours
- Cost of electricity generation ~ 5 US Cents against 10 US Cents (grid)

