ENVIRONMENTAL MANAGEMENT PLAN OF INTEGRATED MEAT PROCESSING UNIT

G.MURALI MOHAN

lanager (Environmental Systems) Al-Kabeer Exports Pvt. Limited Rudraram

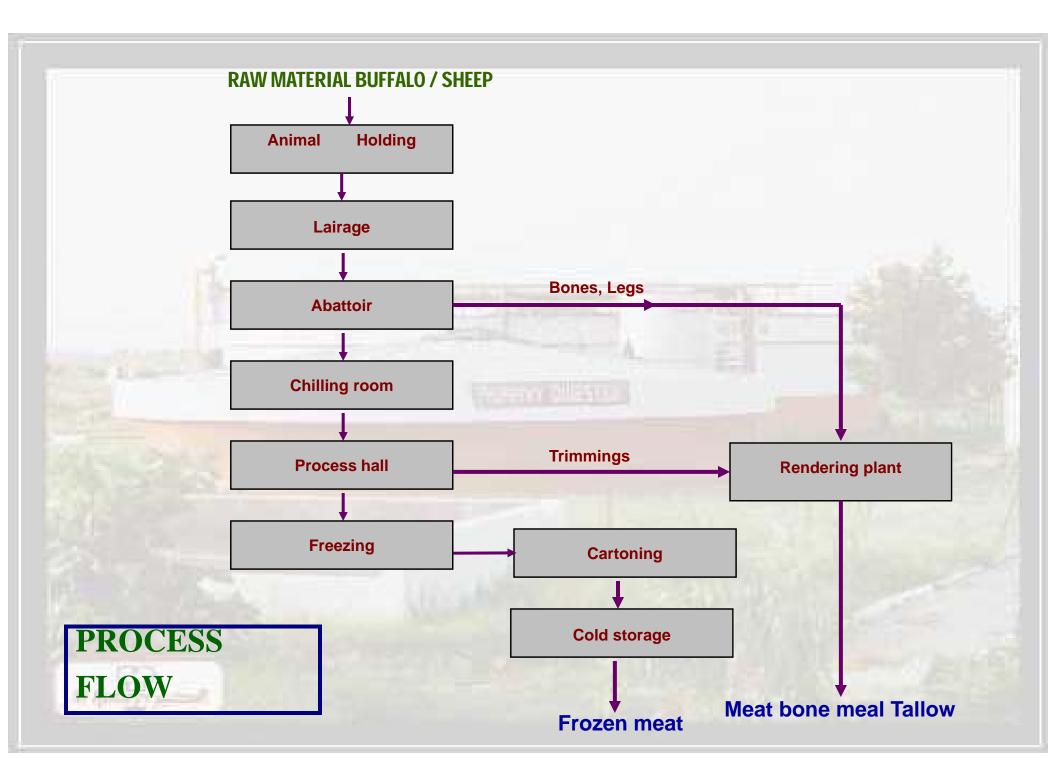
M/s Al-Kabeer Exports Pvt. Ltd

A modern integrated meat processing unit at Rudraram village, Patancheru Mandal, Medak district of A.P. Started in 1993.

100% export oriented mechanised slaughtering unit.

Slaughtering capacity of 2000 sheep and 1000 buffalo per day.

The plant is spread across 300 acres of land of which 250 acres used for on land irrigation and aqua culture.


Products

- Frozen buffalo meat 50 Tons/day
- Frozen sheep meat 12 Tons/day

By Products

- Meat bone meal
- Tallow
- Pet foods
- Hide
- Skin

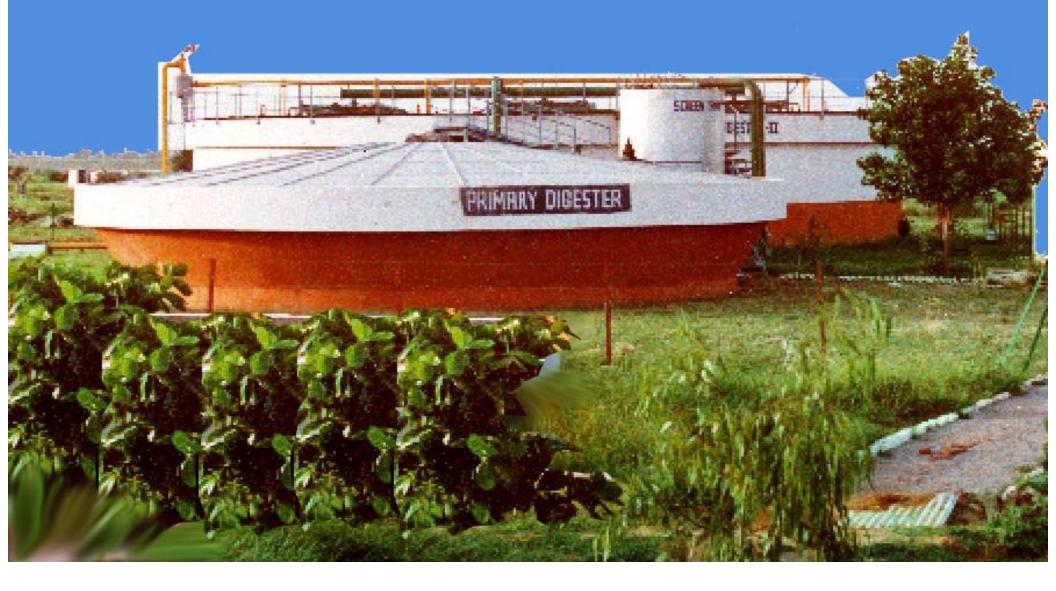
35 Tons/day 12 Tons/day 4 Tons/day 500 Nos./day 1500 Nos./day

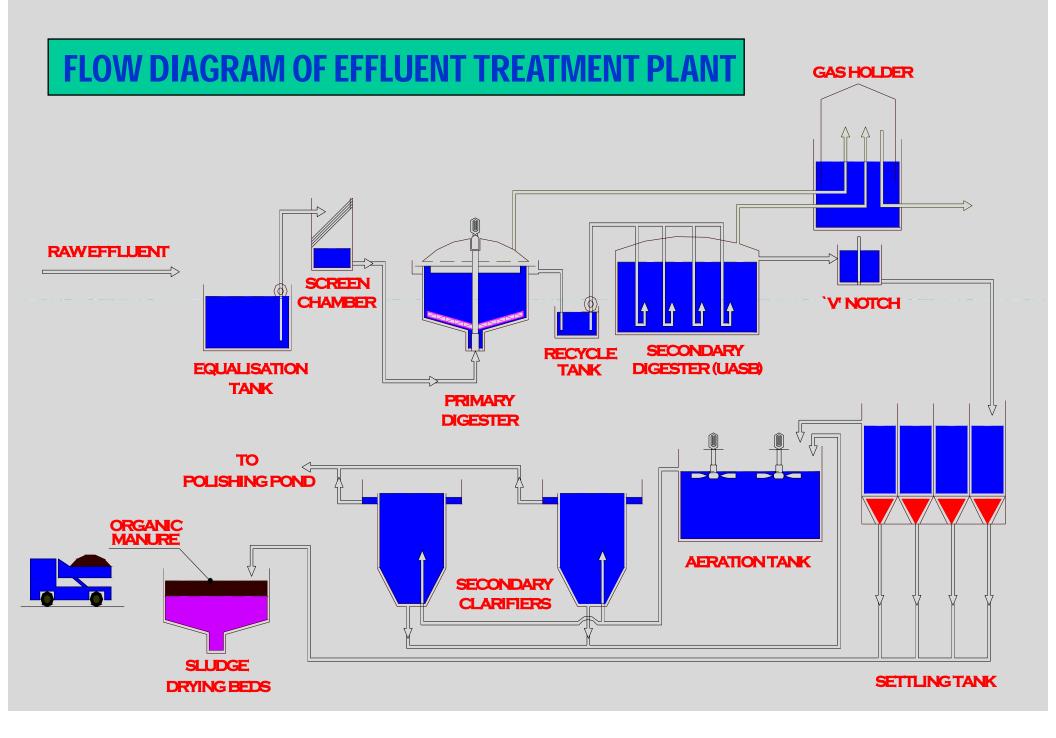
Waste water generation Points

- Animal holding
- Abattoir
- Rendering Plant

Carcass, machinery and floor washings is the source of waste water.

Prominent Impurities - blood, proteins, fat, particles of meat, hair


EFFLUENT CHARACTERISTICS


Flow - 1400 cum/day

• pH	<mark>6.5 - 8.5</mark>
Total Suspended Solids	2000 - 3000
Total Dissolved Solids	1000 - 2000
• COD	6000-8000
• BOD	3000-4000

All values except pH are in mg/l

Effluent Treatment Plant

BIOMETHANATION OF EFFLUENT

- Advantages → No energy Inputs, Bio gas recovery

UASBPROCESS DETAILS

Salient features

Gas Solids Separator Feed inlet distribution

PROCESS

Retention Time24 HOrganic Loading Rate3-4 HCOD to Biogas conversion0.34 Hdest

Efficiency (COD removal)

24 Hours 3-4 kg/cum/day 0.345cum/kg COD destroyed 85%

• **BIOGAS**

Volume 1000cum/day Composition CH₄ 60-64% CO₂ 36-40%

PRODUCTS OF BIOMETHANATION

• <u>SLUDGE</u>

Quantity 1Ton/day

Composition

Nitrogen 4-6%

Phosphorous 0.6-1.0%

Potassium 0.2-0.5%

AEROBIC TREATMENT Type of Aeration - Extended **Aeration** Type of aerator - Mechanical **Surface Aerator** MLSS - 1500mg/l • • F/M - 0.2 **Inlet BOD** - 400mg/l 6 Outlet BOD - 80mg/l Efficiency - 80%

TREATED EFFLUENT CHARACTERISTICS

- pH 7.5
- Total Suspended Solids <100
- Total Dissolved Solids <1900
- COD 130
- BOD 40

REUSE OF TREATED EFFLUENTS

PISCICULTURE

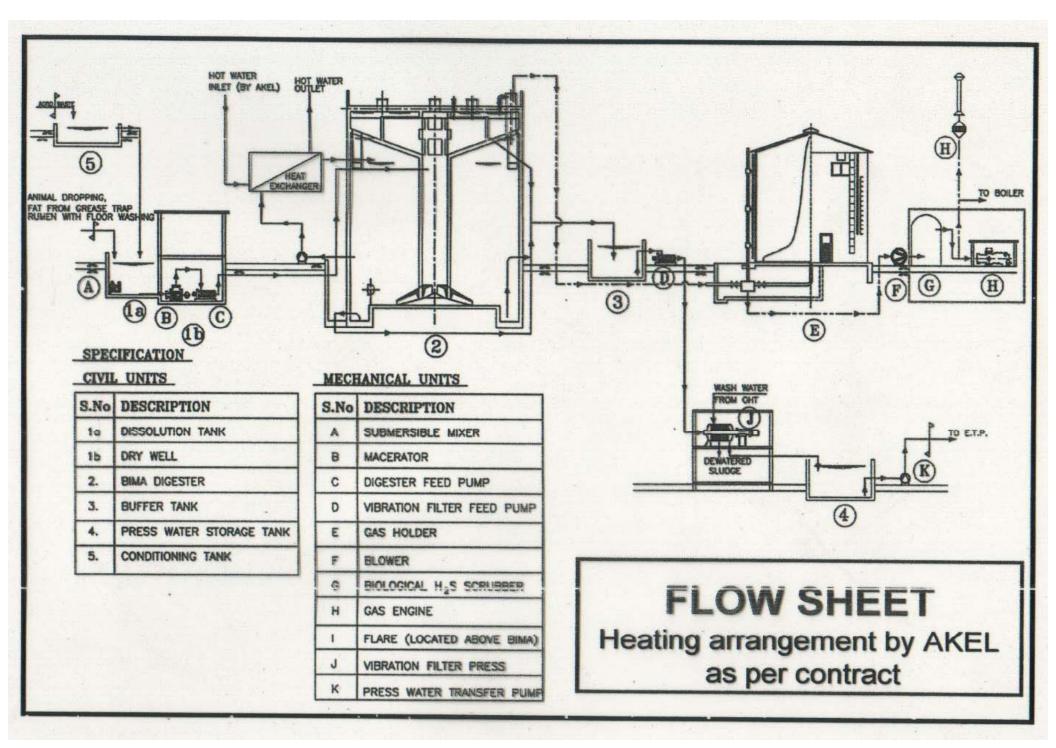
Area - 20 Acres No. of ponds - 16 Type of Fish - snake heads, thilopia, cat fish, Indian carps (rohu, catla)

<u>AGRICULTURE</u>

Area - 160 Acres Plantation - 1. Coconut; 2. Banana 3. Mango; 4. Cashew; 5. Teak Crops - 1. Paddy; 2. sugarcane

HIGH RATE BIOMETHANATION OF 60 TONS / DAY SLAUGHTER HOUSE SOLID WASTE

AT AL-KABEER EXPORTS PVT. LIMITED. HYDERABAD


STAND DISESTER

WASTE QUANTITY

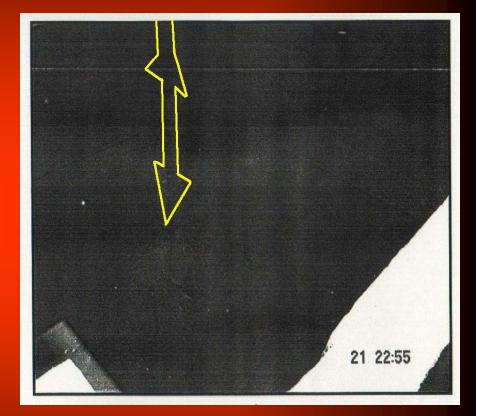
Type of Waste	Quantity (tons/day)
Droppings (Dung)	20
Rumen & Others (Paunch)	25
Fat (from grease trap)	5
Agro waste	10

WASTE CHARACTERISTICS

	CHARACTERISTICS			
TYPE OF WASTE	Moisture	Dry Solid (DS)	Volatile Solids	
	content (%)	(%)	(VS) (%)	
Droppings (Dung)	85.0	15.0	70.0	
Rumen (Paunch)	89.0	11.0	83.0	
Fat	90.0	10.0	90.0	
Agro waste	85.0	15.0	60.0	

CIVIL UNITS IN SOLID WASTE PLANT

Sl	Unit	No.	Size
01	Dissolution tank	2	4 X 4 X 2.5m LD (40m ³ each)
02	Dry well		5 X 5 X 6.56m ht.
03	Anaerobic digester		15m dia. X 15.06m ht.
04	Buffer tank		8 X 4 X 2.5m LD (80 m ³)
05	Dewatering station	1.0	7 X 4 X 7.5m LD (50 m ³)


MECHANICAL EQUIPMENT

Sl	Equipment	No.	Capacity
01	Mixer	2	To suit the dissolution tank#
02	Macerator	1	30 m ³ / hr
03	Digester feed pumps	2	30 m³ / hr@ 20m head
04	BIMA Digester internal parts	1	To suit digester size
05	Vibration filter press feed pumps	2	To suit digester size
06	Vibration filter press	1	5 tons / hr
07	Dry type gas holder	1	500 m ³
08	Protective silo	1	To suit gas holder
09	Blower	2	150 m ³ / hr

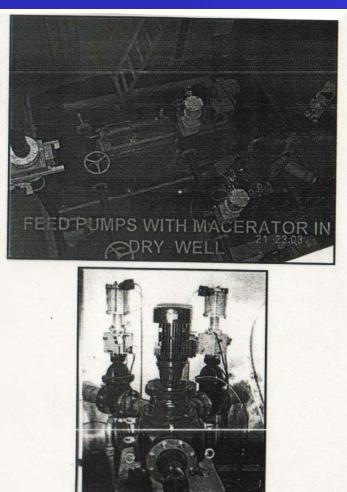
FEED PREPARATION

2 2 Nos. dissolution tanks each with 40m3 capacity are used as waste collection cum feed preparation tanks

2 Agitators are provided in each tank to maintain uniform solid conc.

DISSOLUTION TANK

MAGERATION AND FEEDING


) Feed solution is pumped into the high rate digester through macerator with the help of screw pumps

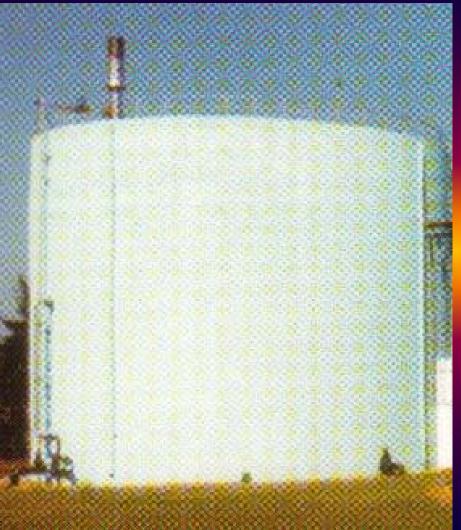
Macerator is provided to reduce the particle size of the feed to less than 10mm

An electromagnetic flow meter is provided on the delivery side of the pump to monitor the feed quantity

) The relevant parameters of the feed is analysed regularly

) The feed to the digester is controlled through PLC and the entire process is automatic

VIEW OF THE MACERATOR


HIGH RATE BIOMETHANATION

High rate BIMA digester is used for processing the solid wastes

This BIMA digester is designed and developed by ENTEC.

Entire operation in the digester like the mixing arrangement is automatic & controlled by PLC

Sample ports are provided in the digester to monitor the pH and analyse the solids concentration inside the digester

HIGH RATE BIMA DIGESTER

BIMA - Digester

Gasdome with Auto mixing valve *****

> Intermediate celing

Main chamber 4


Mixing wings *

Mixing shaft Feeding pipe

Central tube

Ground →sludge pipe

SECTION OF BIMA DIGESTER

DEWATERING


VIBRATION FILTER PRÉSS⁴⁰

-Overflow from the BIMA digester is taken to a buffer tank

-Overflow material is then transferred to vibration filter press for dewatering

-Centrate produced is taken back to the effluent treatment plant

-Dewatered cake is converted to bio manure and sold.

BIOGAS STORAGE

• Biogas generated is stored in a dry type gas holder consisting of a balloon enclosed in a protection silo

• Gas holder has limit switches which indicate the biogas level

• Biogas is utilised in boiler

•in case the gas holder is full, flare is automatically triggered to burn the biogas.

PARAMETERS MONITORED

Regularly

Quantity of feed 6 Total Solids 6 Volatile Solids 6 Volume of Bio-gas produced 6 pH & Temp. in the digester 6 Gas levels in the gas holder 6 Mixing pressure inside the digester 6 Solids conc. In various levels of the digester

<u>Periodically</u> Analysis of Gas (a) VFA (b) Alkalinity

OPERATING DATA

SI	Waste characteristics as per design	During Operation
01	Average TS = 12.91%	TS = 8-12%
02	Average VS = 73.94%	VS = 70-85%
03	Total VS = 5.73 Tons	VS = 3-6 Tons
		Gas produced
04	Gas yield = $2600m^3/day \pm 5\%$	1800-2200m ³ /day
	0.45 m ³ /kg VS fed	0.56 m3/kg of VS
		fed

Operating Data during One Year Performance Guarantee Period – VS Fed, Biogas Generated and Biogas Yield

	Total VS fed (kg)	Total Biogas Generated (m ³)	Biogas Yield (m ³ /kg VS fed)	
			Actual Value	Guaranteed Value
Mar 2002	102280	56598	0.55	0.45
Apr 2002	74183	25063	0.34	0.45
May 2002	66485	40557	0.61	0.45
June 2002	93213	55491	0.60	0.45
July 2002	124474	68312	0.55	0.45
Aug 2002	101169	47839	0.47	0.45
Sept 2002	66968	47727	0.71	0.45
Oct 2002	66902	46375	0.69	0.45
Nov 2002	49454	35664	0.72	0.45
Dec 2002	58606	30397	0.52	0.45
Jan 2003	133205	66238	0.50	0.45
Feb 2003	94063	52312	0.56	0.45
Mar 2003	98136	49896	0.51	0.45
Apr 2003	80563	38924	0.48	0.45

thank you