

Limitations of existing tools and improvisations in the current implementation

While a number of tools are available, they use coefficients and correlations derived from experience on conventional fuels.

Differences in fuel/mixture thermo-physical properties renders monotonous adoption of such correlations infeasible.

Developed model addresses the mentioned concerns and is directed at handling engine simulation with bio-fuels

Consequences of using conventional simulation tools

Numerical simulation model : Governing Physics, features and functionalities

$$\frac{dP}{d\theta} = \frac{(\gamma - 1)}{V} \frac{dQ}{d\theta} - \gamma \frac{P}{V} \frac{dV}{d\theta} + \frac{(\gamma - 1)}{V} \left[\frac{c_i^2}{(\gamma_i - 1)} \frac{dm_i}{d\theta} - \frac{c_e^2}{(\gamma_e - 1)} \frac{dW_i}{d\theta} - \frac{C_e^2}{(\gamma_e - 1)} \frac{dW_i}{d\theta} - \frac{C_e^2}{(\gamma_e - 1)} \frac{dW_i}{d\theta} - \frac{W_i}{(\gamma_e - 1)} \frac{dW_i}{d\theta} - \frac{W_i}{(\gamma_e - 1)} \frac{dW_i}{d\theta} - \frac{W_i}{(\gamma_e - 1)} \frac{W_i}{d\theta} - \frac{W_i}{(\gamma_e - 1)} \frac{W_i}{d\theta} - \frac{W_i}{(\gamma_e - 1)} \frac{W_i}{(\gamma_e -$$

Geometric Information	Operating Parameters					
Bore diameter	102	(mm)	Fuel	Producer C	Gas 👻	
Stroke length	120	(mm)	Tempera	ature	25	(deg
Connecting rod length	192	(mm)	Engine s	peed	1500	(rpr

Key Feature – 3 : Reaction kinetics based knock estimation module

Engine turbocharger optimization – Case study

Producer gas fuelled power rating estimation

Engine			Baseline data			PG Operation		
Make	Model	сс	Fuel	CR	Rating	CR	Obs	Sim
					kWe		kWe	
Honda	GX620	615	Gasoline	8.3	7	8.3	4.3	4.2
Kohler	CH740	725	NG	9.1	9	9.1	6.0	5.2
Cummins	CS 15 D5	1669	Diesel	18.5	12	11.6	7.9	8.8
Kirloskar	RB33	3308	Diesel	17.0	24	11.5	17.6	19.0
Cummins	6B 5.9-NA	5900	NG	10.5	40	10.5	27.3	28.5
Cummins	6B 5.9-TA		NG	10.5	72	10.5	72.8	67.0

A GUI based engine simulation tool has been developed and validated which can used for preliminary engine performance analysis with both conventional and bio-fuels.

The authors wish to acknowledge MNRE, Government of India and various engine manufacturers who have shared the data

• Turbocharged PG fuelled operation NG of engine suggested ~ 65% de-rating

> Base NG engine operation with PG

Model based power recovery analysis manifold • Peak pressure of 2.4 bar suggested Knock limited peak load of 75 kWe

• Turbocharger optimization supported knock limited peak load of 72.8 kWe

> Turbo-optimized engine operation